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Abstract
Soil apparent electrical conductivity  (ECa) has been used to map spatial variability of soil 
properties in multiple cropping systems and may have applications in precision turfgrass 
management (PTM). The objective of this research was to determine whether  ECa data 
could predict the spatial structure of soil properties relevant to turfgrass management. 
Research was conducted at the University of Georgia (UGA) and the Georgia Club (GC) 
golf courses in North GA during the summer of 2016. A mobile Veris Q1000 device was 
used to collect georeferenced  ECa data from six golf course fairways (three per course). 
Soil samples were collected from each fairway using a georeferenced grid to determine 
clay content, soil pH, cation exchange capacity (CEC) and organic matter (OM). To under-
stand the predictive relationship between  ECa and soil properties, correlation coefficients 
and multiple linear regression models were generated for each fairway. Spatial maps were 
used to visually demonstrate these relationships. Though some relationships were observed 
between  ECa and soil properties (primarily clay, soil pH and OM on the UGA course), 
measured parameters were insufficient to fully explain spatial variability in  ECa. Findings 
from this study suggest that spatial variability of soil properties in turfgrass can be signifi-
cant enough to warrant PTM. Though  ECa may be used to partially predict clay content, 
CEC, OM and soil pH, additional research is required to better understand  ECa variability 
and its applications for PTM. Future research exploring  ECa for PTM should consider the 
roles of soil moisture, temporal variability and topography.
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Introduction

As of 2010, the number of golf courses worldwide was estimated to be upwards of approxi-
mately 32,000, covering between 19,200 and 25,600  km2 of land (Bartlett and James 
2011). Though small compared to many agricultural cropping systems, golf courses tend 
to be concentrated around urban ecosystems and can have a significant impact on urban 
air and water quality. Traditional golf course management relies heavily on supplemental 
fertility to support healthy vegetative growth, since biogeochemical cycling in urban soils 
is often disrupted by anthropogenic activity that limits nutrient availability (Cheng and 
Grewal 2009; Milesi et al. 2005; van Delden et al. 2016). Poor understanding of turfgrass 
nutrient requirements can lead to fertilizer mismanagement and subsequent water and air 
pollution through leaching, runoff and volatilization of harmful trace gases (Bartlett and 
James 2011; Milesi et al. 2005; Qian et al. 2003). On the other hand, nutrient deficiencies 
resulting from low fertility could lead to stunted vegetative growth, tissue chlorosis, as well 
as eventual necrosis and potential plant death (Carrow et al. 2001; Havlin et al. 2005). Even 
small nutrient imbalances can have large consequences for turfgrass managers, since they 
may compromise aesthetic quality, stress tolerance and overall playability.

The implementation of precision agriculture (PA) may optimize nutrient management 
(Corwin and Lesch 2003; Rhoades et  al. 1999). In PA, site-specific management units 
(SSMUs) are delineated in accordance with the spatial distribution of soil properties that 
ultimately affect management needs. These same principles are now being applied to turf-
grass systems under the name precision turfgrass management (PTM) (Carrow et al. 2010; 
Ganjegunte et  al. 2013; Straw et  al. 2016; Straw and Henry 2017). Similar to PA, PTM 
affords turfgrass managers the opportunity to improve input efficiency, thereby fostering 
environmental stewardship on large-scale turfgrass production (Carrow et al. 2010). One 
of the greatest challenges to implementing PA and PTM is that soil sampling procedures 
are both costly and time-consuming, rendering them impractical when mapping soil spa-
tial heterogeneity (Allred et al. 2008). As such, alternative methods of data collection are 
employed to provide faster, more efficient methods for predicting spatial distribution of soil 
properties.

In recent years, quantification of apparent electrical conductivity  (ECa) has been used as 
a minimally-invasive method for predicting spatial patterns of soil properties important to 
crop management. It is well-established in the literature that  ECa is effective at producing 
accurate, large-volume measurements that have practical applications for PA (Cho et  al. 
2016; Corwin and Lesch 2003; Huang et  al. 2016; Pedrera-Parrilla et  al. 2016a; Stadler 
et al. 2015). The  ECa measures conductance through solid soil particles and via exchange-
able cations in the solid–liquid interface of clay minerals in addition to the soil solution 
(Corwin and Lesch 2003; Rhoades et al. 1999).

The presence of exchangeable cations in a given volume of soil is primarily a reflection 
of soil composition. Specifically,  ECa tends to be positively correlated with soil colloids 
such as clay particles or organic matter, which will have a greater cation exchange capac-
ity (CEC) (Brady and Weil 2008; Havlin et al. 2005). As a result, in non-saline soils,  ECa 
has been positively correlated with both clay content (Cho et al. 2016; Fulton et al. 2011; 
Stadler et  al. 2015; Pedrera-Parrilla et  al. 2016b) and organic carbon (Gholizadeh et  al. 
2011). However, in some cases, these relationships are not always consistent (Cho et  al. 
2016; Stadler et al. 2015). The predominant influence of one property, such as organic mat-
ter or soil moisture, may impede the ability to accurately measure another variable such as 
clay content (Stadler et al. 2015).
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The relative concentration and composition of the soil solution, as influenced by soil 
texture and management practices, can also directly influence conductance by changing 
the concentration and composition of ions in the soil profile (Corwin and Lesch 2003). 
As such,  ECa has also been positively correlated to soil moisture (Pedrera-Parrilla et  al. 
2016b), and saturated hydraulic conductivity (Rezaei et  al. 2016). Soil chemical proper-
ties, such as pH will further influence conductance by determining the solubility of ionic 
compounds present.

The applications of  ECa in PTM have centered primarily on salinity management and 
site-specific leaching (Carrow et al. 2010; Ganjegunte et al. 2013; Krum et al. 2011). There 
is currently little to no research exploring the relationship between  ECa and other soil prop-
erties in turfgrass systems. The continuous surface of vegetation indicative of turfgrass sys-
tems presents a unique challenge to precision management, which limits data collection 
methods to those that are relatively non-invasive. In addition to this, turfgrass management 
practices contribute to a unique subsurface soil profile. The lack of regular cultivation in 
turfgrass systems can result in a more pronounced organic matter layer which can inhibit 
 ECa mapping of subsurface zones in turfgrass systems when compared to agricultural soils 
without a crop cover (Krum et al. 2011).

The two primary geophysical survey methods employed to measure  ECa are electro-
magnetic induction (EMI) and electrical resistivity (ER) (Allred et al. 2008). In general, 
EMI devices are considered non-invasive, because they do not penetrate the soil to collect 
data, unlike some ER devices which will directly inject electrodes into the surface. Con-
sequently, previous research on  ECa in turfgrass systems has exclusively focused on EMI 
devices to avoid potential surface damage (Krum et al. 2011). However, in a study compar-
ing the Veris device with an EMI sensor, Serrano et al. (2014) found that Veris devices may 
be more appropriate than non-invasive EMI devices for measuring soil properties when a 
vegetative layer is present, as the vegetation may mask soil properties. Veris devices (Veris 
Technologies, Salina, KS, USA) consist of cart-mounted coulters (discs) that function as 
four equally-spaced electrodes (referred to as a 4-Wenner array). Several units have been 
modified to penetrate the soil at a shallower depth of approximately 20  mm and collect 
measurements for the uppermost 0.3–0.4 m of the soil profile where most turfgrass roots 
are concentrated. The utilization of this Veris device may make it possible to establish rela-
tionships between  ECa and soil properties in turfgrass, expanding its potential applications 
in PTM beyond measurements of soil salinity. The objective of this research was to deter-
mine whether the modified Veris device and  ECa data could be used to accurately predict 
the spatial structure of soil properties relevant to nutrient management in turfgrass systems 
(clay content, soil pH, CEC and OM).

Materials and methods

Site descriptions

Research was conducted at the University of Georgia (UGA) golf course in Athens, GA 
and the Georgia Club (GC) golf course in Statham, GA during the summer of 2016. Six 
fairways were selected (three per course). Individual fairways ranged from approximately 
4000–8000 m2 in area and were chosen to reflect changes in topography that may impact 
the spatial distribution of soil physical and chemical properties relevant to soil fertility. 
Fairways at UGA (F1, F2 and F3) and GC (F4, F5 and F6) were comprised of ‘Tifway 419’ 
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hybrid bermudagrass [Cynodon dactylon L. (Pers.) × C. transvaalensis Burtt-Davy] estab-
lished on native soil.

The UGA golf course was originally developed in 1968 and was extensively renovated 
in 2006; however, many of the fairways still reflect the original design. Soils for UGA fair-
ways are classified as Pacolet sandy clay loams (severely eroded) with small sections of 
Cecil sandy loam (moderately eroded). Fairways were irrigated with an automated irriga-
tion system as a supplement to rainfall. Fertility was applied in the spring as a combination 
of slow-release urea formaldehyde and conventional urea fertilizers at a rate of 48–96 kg N 
 ha−1. Micronutrients (Fe and Mg) were applied as needed.

The GC golf course has 27 holes and was built in two stages. Two fairways (F5 and 
F6) were constructed and established in 1999–2000, while F4 was established in 2005. 
Predominant soil classifications at GC were unique to each fairway, and included Pacolet 
sandy clay loam with moderate to severe erosion (F4), Cartecay and Chewacla soils (F5), 
and Madison sandy clay loam with moderate erosion (F6). Fairways were irrigated with 
an automated irrigation system as a supplement to rainfall. Fertility was applied as a slow-
release urea–formaldehyde fertilizer (37-0-0) at a rate of 86  kg  N  ha−1. A plant growth 
regulator (trinexapac-ethyl) with a liquid iron (Fe) fertilizer was applied intermittently 
throughout each growing season.

ECa surveys

A 4-disc Veris Q1000 Soil EC Mapping System was used to collect  ECa data (mS  m−1) for 
each fairway. Veris devices measure resistivity (ρ, ω  m−1) using an electrode configuration 
referred to as the Wenner array given by the equation (Burger 1992):

where V is the voltage, α is the inter-electrode spacing, i is the electrical current (A) and R 
is the measured resistance defined as one ohm (ω) of resistance that allows a current of one 
ampere to flow when a single volt of electromotive force is applied. Since  ECa is simply the 
inverse of ρ, the equation for  ECa in relation to resistivity can be written as:

The device was towed behind a utility vehicle which traversed each fairway at a speed of 
approximately 16–25 km h−1 and collected measurements at a rate of 1 Hz. The number of 
data points varied according to fairway size and shape, but ranged from 253–570 for a total 
of 2493 points across all fairways. Device discs penetrated the ground at a depth of approx-
imately 20 mm and collected  ECa measurements from the uppermost 0.3–0.4 m of the soil 
profile. For comparison purposes,  ECa is generally expressed by devices such as this at a 
reference temperature of 25 °C (Corwin and Lesch 2005a). Relative, rather than absolute, 
 ECa values are what allows for the identification of contrasting soil zones. In order to guar-
antee relatively uniform soil temperature conditions,  ECa data were collected from all six 
fairways on the same day. A global positioning system (GPS) receiver (Trimble EZ Guide 
250 of Trimble, Sunnyvale, CA, USA) with an upgraded antenna for differential GPS was 
used in conjunction with the mobile device to simultaneously log  ECa and geographical co-
ordinates. Resulting shapefiles were subsequently imported into ArcGIS (Esri, Redlands, 
CA, USA) for geospatial analysis.

(1)� =
2�aΔV

i
= 2�aR

(2)ECa =
1

2�aR
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Soil sampling and analysis

Corresponding soil sampling grids for each fairway were generated in Geospatial Modeling 
Environment (Spatial Ecology LLC, St. Lucia, QLD, Australia) using a specified grid spac-
ing of 7 m × 7 m. Maps featuring  ECa survey points versus soil sampling grid points for F4 
are presented in Fig. 1 as visual examples of each sampling distribution. The total number 
of soil sample points per fairway varied according to fairway size, but ranged from 80 to 
128 points per fairway for a total of 643 samples across all fairways. Each sampling grid 
was subsequently imported into a GPS receiver (Trimble GPS Geoexplorer 6000) using 
ArcPad 10 mapping software (Esri, Redlands, CA, USA). Composite samples of 10–15 
soil cores (≈ 20 mm in diameter pulled to a 0.1-m depth) were collected within a 0.3-m 
radius of each georeferenced point. Intact cores were collected in 0.95-l plastic bags and 
were immediately frozen to preserve core integrity. Individual soil samples were air-dried 
for 48 h, sieved through a 2-mm mesh and shipped to Waypoint Analytical Labs in Mem-
phis, TN, USA for soil analysis.

Soil samples were analyzed for CEC, pH and OM. Particle-size analysis (% sand, silt 
and clay) was completed using the hydrometer method to determine soil texture (Bouyou-
cos 1936; Day 1965). Soil pH was determined using methods outlined by Eckert and Sims 
(2009). However, deionized water was used in lieu of  CaCl2 solution. Determination of OM 
was completed through loss on ignition (Schulte and Hoskins 2009), with the soil heated 
at 400  °C instead of 360  °C. Macronutrients (K, Ca and Mg) were extracted using the 
Mehlich 3 extraction procedure (Mehlich 1984). Cation exchange capacity (meq 100 g−1) 
was subsequently calculated from the sum of Ca, Mg and K obtained (ppm) using the fol-
lowing equation from Ross and Ketterings (1995):

ECa semivariogram analysis and kriging

ArcMap 10.3.1 mapping software (Esri), RStudio version 3.2.1 (RStudio, Inc., Boston, 
MA, USA) and SAS 9.4 (SAS Institute Inc., Cary, NC, USA) were used to develop, display, 
analyze and interpret the data. All analyses conducted in ArcMap utilized the projected 
coordinate system NAD 1983 State Plane Georgia East FIPS 1001. Descriptive statistics 
[mean, min, max, standard deviation and coefficient of variability (CV)] were produced for 
all sampled fairways to evaluate central tendency and variability of the data for individual 
soil properties.

Spatial maps were created for both apparent electrical conductivity point data and 
corresponding soil sampling grids. These maps were used to visualize and compare spa-
tial variability of clay content (%),  ECa (mS  m−1), soil OM (%) and CEC (meq 100 g−1). 
Soil sample and  ECa data collected by the Veris Q1000 were interpolated using ordinary 
point kriging (Schabenberger and Pierce 2001). Kriging is a geostatistical technique that 
determines the best combination of weights for interpolation using the spatial parameters 
(range, nugget and sill) of an experimental semivariogram (Fortin and Dale 2005). Semi-
variogram parameters were calculated using the VARIOGRAM Procedure in SAS 9.4 to 
depict the spatial autocorrelation of measured points for each parameter (clay content, 
OM, CEC, pH and  ECa) on each fairway. Models with Gaussian, spherical or exponential 
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Fig. 1  Geo-referenced sample locations for apparent electrical conductivity  (ECa) data collected by the 
Veris Q1000 unit, and soil samples collected by hand on Fairway 4 (F4) at the Georgia Club Golf Course in 
Statham, GA in 2016
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structures were selected for all fairways and the best parameters determined according to 
lowest Akaike information criterion (AIC). Lag sizes were determined either by sample 
grid spacing when uniform (clay content, pH, CEC and OM) or by calculating the average 
‘Nearest Neighbor’ in ArcMap for more irregular sampling schemes  (ECa data). Semivari-
ograms were subsequently plotted in ArcMap using the Geostatistical Analyst tool when 
preparing spatial maps.

Because  ECa sample points did not overlap directly with soil sampling points, estimated 
 ECa values were extracted from each  ECa spatial map to soil sampling points using the 
‘Extract Values to Points’ feature in ArcMap. This made it possible to evaluate the rela-
tionship between  ECa and soil physical and chemical properties (clay content, pH, CEC 
and OM) more directly. The ‘modified.ttest’ function in the SpatialPack package of RStu-
dio version 3.2.1 was used to calculate a corrected Pearson’s r correlation coefficient that 
accounted for spatial autocorrelation between soil properties (Osorio et  al. 2018). When 
evaluating spatially autocorrelated data, standard statistical tests can show a bias effect 
where the coefficient is deemed significant more often than it should be (Legendre 1993). 
The corrected Pearson’s r correlation coefficient is more conservative to provide a more 
accurate declaration of significance. In cases where data distributions were not normal, 
modified t-tests were conducted on ranked data sets to adjust for skewness.

Multiple linear regression models were determined for UGA and GC to predict  ECa 
based on clay content, pH, CEC and OM using the generalized least squares (‘gls’) func-
tion in the ‘nlme’ package of RStudio (Pinheiro et  al. 2015). Several temporary models 
were first constructed prior to the final model. First, a comparative stepwise forward and 
backward variable selection procedure was used to determine an initial model for each fair-
way. Only those parameters that exhibited a relationship with  ECa (r > |0.1|) were consid-
ered in each model. The stepwise procedure relies upon an AIC, which will penalize the 
number of explanatory variables to prevent overfitting the model. A temporary semivari-
ogram was fit to the residuals of this model, and the forward–backward selection process 
was repeated using a fixed spatial autocorrelation structure. Multiple spatial correlation 
structures (Gaussian, spherical, exponential and linear) were incorporated into the residual 
patterns. Models with Gaussian or exponential correlation structures were selected for all 
fairways and parameters according to lowest AIC. The correlation of residuals is deter-
mined by the distance between all pairs of data points. After re-fitting the variogram to 
each mixed model, final models were re-estimated with the final variogram of the residu-
als. Simple regression models were also determined to predict CEC from OM to demon-
strate the importance of OM in determining nutrient availability in turfgrass systems. To 
visually demonstrate the efficacy of each model, scatter plots showing Predicted  ECa v. 
Measured  ECa were produced for each fairway with an adjusted  R2 value.

Results

Descriptive statistics and kriged maps Descriptive statistics for soil and sensor data are 
summarized in Tables 1 and 2. Average soil  ECa was slightly higher at GC (x̅ = 6.6 mS 
 m−1) compared to UGA (x̅ = 4.8 mS  m−1). The UGA location exhibited more spatial vari-
ability in  ECa with a range of 15.4 mS  m−1 and a CV of 37.7% compared to a range of 14.2 
mS  m−1 and a CV of 32.5% at GC. Mean clay contents for UGA and GC were 15% and 
9%, respectively. Ranges in clay content at each course were comparable (26% at UGA and 
24% at GC). However, clay content at GC had a higher coefficient of variation (49.0%) than 
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UGA (31.1%) indicating a greater degree of spatial variability in clay content for sampled 
GC fairways. 

Soil pH was acidic for both locations, but more so at UGA (x̅ = 5.5) than at GC (x̅ = 6.3). 
The optimum pH range for most turfgrasses is between 6 and 7; however, bermudagrass 
typically tolerates a much wider range (Carrow et al. 2001). Neither location exhibited a 
high degree of variability with a CV of 3.8% at UGA and 4.1% at GC. Organic matter con-
tent was greater at GC (x̅ = 8.1%) compared to UGA (x̅ = 5.7%). Coefficients of variation 
for OM at UGA and GC were 20.1 and 24%, respectively. Finally, mean CEC was calcu-
lated at 5.7 meq 100 g−1 at UGA (CV = 19.2%) and 8.3 meq 100 g−1 at GC (CV = 14.3%). 
Semivariograms for  ECa maps for each fairway are presented in Fig. 2, as a visual example 
of the 30 semivariograms generated to map soil properties. It should be noted that while 
most  ECa semivariograms demonstrated good spatial structure, the one generated for F2 
was almost pure nugget. Additionally, a greater degree of variation was observed for both 
F2 and F3 (Fig. 2). This is indicted by the larger scale of the y-axis of both graphs, which 

Table 1  Descriptive statistics for ECa
a (mS  m−1), clay content (%), soil pH, CEC (meq 100 g−1), and OM 

(%) at the University of Georgia golf course in Athens, GA in 2016

a Abbreviations: ECa apparent electrical conductivity; OM organic matter; CEC cation exchange capacity; 
CV coefficient of variation
b Descriptive statistics for all three fairways measured at the UGA course

Fairway Sample size Min Max Range Mean Standard 
deviation

CV (%)

mS  m−1

ECa 1 253 1.4 8.8 7.4 4.1 1.4 34.4
2 293 1.3 16.7 15.4 4.4 1.9 43.6
3 427 1.6 10.5 8.9 5.5 1.7 31.0
Courseb 973 1.3 16.7 15.4 4.8 1.8 37.7

Clay %
1 93 2 26 24 14 5.5 39.0
2 87 4 28 24 14 4.0 28.8
3 147 6 27 21 16 4.2 25.5

pH Course 327 2 28 26 15 4.7 31.1
1 93 5.0 6.0 1.0 5.4 0.2 3.1
2 87 5.1 6.4 1.3 5.5 0.2 4.4
3 147 5.0 6.2 1.2 5.5 0.2 3.6
Course 327 5.0 6.4 1.4 5.5 0.2 3.8

meq 100 g−1

CEC 1 93 3.4 7.2 3.8 4.8 0.9 18.1
2 87 3.5 9.6 6.1 6.1 1.0 17.2
3 147 3.4 8.8 5.4 6.0 0.9 15.1
Course 327 3.4 9.6 6.2 5.7 1.1 19.2

%
OM 1 93 3.8 8.2 4.4 5.1 0.9 18.3

2 87 4.1 9.3 5.2 6.0 1.0 16.7
3 147 3.1 10.3 7.2 5.9 1.2 20.7
Course 327 3.1 10.3 7.2 5.7 1.1 20.1
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is dictated by the variogram cloud when plotted in ArcMap. Semivariogram parameters 
for  ECa, clay content, OM, CEC and soil pH for all 6 individual fairways can be found in 
Tables 3 (UGA) and 4 (GC). A total of 30 maps were generated to visualize spatial dis-
tribution of soil physical and chemical properties; however, only select maps will be pre-
sented in order to demonstrate specific points for discussion.

Influence of soil physical and chemical properties on spatial variability of  ECa

The relationship between  ECa and soil properties (clay content, pH, OM and CEC) was not 
consistent across or within locations. Rather, the dominant properties influencing  ECa and 
the degree of influence varied across fairways. Multiple regression models to show which 
variables relate to  ECa for each respective fairway are summarized in Table 7.

Table 2  Descriptive statistics for ECa
a (mS  m−1), clay content (%), soil pH, CEC (meq 100 g−1), and OM 

(%) at the Georgia Club golf course in Statham, GA in 2016

a Abbreviations: ECa apparent electrical conductivity; OM organic matter; CEC cation exchange capacity; 
CV coefficient of variation
b Descriptive statistics for all three fairways measured at the UGA course

Fairway Sample size Min Max Range Mean Standard 
deviation

CV (%)

mS  m−1

4 469 1.6 15.5 13.9 6.7 2.3 34.3
ECa 5 570 1.3 12.7 11.4 5.6 2.1 37.0

6 481 2.6 14.7 12.1 7.7 2.1 27.2
Courseb 1520 1.3 15.5 14.2 6.6 2.1 32.5

%
4 80 2 15 13 7 2.5 34.8

Clay 5 128 4 14 10 8 2.2 29.8
6 108 4 26 22 12 5.7 47.7
Course 316 2 26 24 9 4.4 49.0
4 80 6.2 7.2 1 6.6 0.2 3.1

pH 5 128 5.6 6.9 1.3 6.2 0.2 3.6
6 108 5.7 6.9 1.2 6.3 1.2 3.0
Course 316 5.6 7.2 1.6 6.3 0.3 4.1

meq 100 g−1

4 80 5.3 10.6 5.3 7.8 1.0 12.3
CEC 5 128 5.6 12.1 6.5 8.6 1.2 14.2

6 108 5.8 13.1 7.3 8.4 1.4 14.3
Course 316 5.3 13.1 7.8 8.3 1.2 14.3

%
4 80 3.7 12.8 9.1 7.5 1.6 21.1

OM 5 128 4.6 18.3 13.7 8.8 2.3 26.0
6 108 4.9 12.4 7.5 7.7 1.4 18.7
Course 316 3.7 18.3 14.6 8.1 1.9 24.0



 Precision Agriculture

1 3

Fig. 2  Semivariograms used to interpolate apparent electrical conductivity  (ECa) data and produce spatial 
maps for Fairways 1-6 (F1-F6, respectively)
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UGA course

Pearson (r) correlation coefficients served as an exploratory analysis to provide ini-
tial insight into which properties relate to  ECa for each fairway (Tables 5 and 6). In this 
paper, correlations are described as weak (r < 0.35), moderate (r = 0.36 − 0.65), and strong 
(r > 0.65) (Taylor 1990). When constructing linear models, negligible (r < 0.1) relation-
ships with  ECa were not considered.

Correlation coefficients between  ECa and soil properties for F1 were not determined 
to be statistically significant (p > 0.05); however, the strength of these relationships and 
visual comparisons of spatial maps prompted the authors to present them here. The lack 
of significance is likely due to the more conservative estimation by the corrected Pear-
son’s r method, as influenced by the nature and degree of spatial autocorrelation observed 
on this fairway (Legendre 1993). It appeared as though  ECa on F1 was weakly related to 
pH (r = 0.3), moderately related to CEC and OM (r = 0.39 and 0.47, respectively), and 
strongly related to clay content (r = 0.7). Visual comparison of  ECa and clay content spatial 
maps (not shown), as well as  ECa and OM spatial maps for F1 (Fig. 3) indicated a clear 

Table 3  Semivariogram parameters of ECa
a (mS  m−1), clay content (%), soil pH, CEC (meq 100 g−1), and 

OM (%) at the University of Georgia golf course in Athens, GA in 2016

a Abbreviations: ECa (apparent electrical conductivity); OM organic matter; CEC cation exchange capacity; 
RMSE root-mean-square error
b The lag size is the respective sample grid spacing. If the grid was not symmetrical then the average ‘Near-
est Neighbor’ was used  (ECa data)
c The number of bins was calculated from half the maximum distance in the data set divided by the respec-
tive sampling grid spacing
d Models were selected from spherical, exponential, and Gaussian spatial correlation structures according to 
lowest Akike information criterion

Sample size Nugget Sill Range (m) Lag  sizeb Number 
of  binsc

Modeld RMSE

F1
 ECa 253 0.8 1.5 40.2 4.1 24 Exponential 1.0
 Clay 93 1.2 29.0 98.0 7.0 14 Exponential 3.0
 pH 93 0.0 0.0 98.0 7.0 14 Exponential 0.2
 CEC 93 0.0 0.7 32.9 7.0 14 Exponential 0.6
 OM 93 0.5 0.9 98.0 7.0 14 Exponential 0.9

F2
 ECa 293 2.9 1.0 98.0 3.5 28 Exponential 1.4
 Clay 87 8.8 16.3 44.3 7.0 14 Spherical 3.2
 pH 87 0.0 0.1 98.0 7.0 14 Exponential 0.2
 CEC 87 0.5 1.1 28.7 7.0 14 Spherical 0.9
 OM 87 0.6 1.1 49.6 7.0 14 Exponential 0.9

F3
 ECa 427 0.7 2.2 26.6 3.7 41 Spherical 1.1
 Clay 147 9.6 20.4 98.0 7.0 22 Exponential 3.7
 pH 147 0.0 0.0 154.0 7.0 22 Exponential 0.2
 CEC 147 49.9 50.7 49.9 7.0 22 Exponential 0.7
 OM 147 0.4 1.3 80.4 7.0 22 Exponential 0.9
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relationship. Visual comparison of  ECa and CEC maps (not shown), as well as  ECa and pH 
maps (not shown), for F1 did not show a strong spatial relationship. In the stepwise selec-
tion of the multiple linear regression model for F1 (null model AIC = − 67.7), pH and CEC 
were excluded from the final model (Table 7) leaving clay and OM (∆AIC = 2.8); however, 
neither parameter was determined to be statistically significant. An exponential model with 
a range of 18.99 m and a nugget of 0.005 was fitted to the residual spatial autocorrelation. 
A scatter plot of the predicted versus measured  ECa values for F1 are presented in Fig. 3 
 (R2 = 0.51).

Results for F2 showed that  ECa was found to be weakly related to clay (r = 0.14), CEC 
(r = 0.17) and OM (r = 0.14) and moderately related to pH (r = 0.47). Maps generated in 
order to visualize the spatial variability of  ECa and soil pH for F2 are displayed in Fig. 4. 
Visual comparison of the two maps point to a clear positive relationship with the highest 
 ECa and soil pH values concentrated on the eastern portion of the fairway and the lowest 
values concentrated down the center of the fairway. More moderate values for  ECa and 
soil pH also appear to be directly correlated to one another. In the stepwise selection of 
the multiple linear regression model for F2 (null model AIC = −  25.3), the final model 

Table 4  Semivariogram parameters of ECa
a (mS  m−1), clay content (%), soil pH, CEC (meq 100 g−1), and 

OM (%) at the Georgia Club golf course in Statham, GA in 2016

a Abbreviations: ECa apparent electrical conductivity; OM organic matter; CEC cation exchange capacity; 
RMSE root-mean-square error
b The lag size is the respective sample grid spacing. If the grid was not symmetrical then the average ‘Near-
est Neighbor’ was used  (ECa data)
c The number of bins was calculated from half the maximum distance in the data set divided by the respec-
tive sampling grid spacing
d Models were selected from spherical, exponential and Gaussian spatial correlation structures according to 
lowest Akike information criterion

Sample size Nugget Sill Range (m) Lag  Sizeb Number 
of  Binsc

Modeld RMSE

F4
 ECa 469 0.3 5.9 32.7 1.9 35 Exponential 1.3
 Clay 80 3.7 6.2 16.0 7.0 9 Spherical 2.5
 pH 80 0.0 0.1 63.0 7.0 9 Exponential 0.2
 CEC 80 0.6 0.9 13.5 7.0 9 Exponential 1.0
 OM 80 2.3 2.7 47.7 7.0 9 Spherical 1.6

F5
 ECa 570 1.2 1.1 54.9 2.8 44 Exponential 1.1
 Clay 128 0.0 0.0 13.5 7.0 18 Gaussian 0.1
 pH 128 0.0 0.0 13.5 7.0 18 Spherical 0.2
 CEC 128 0.6 1.5 126.0 7.0 18 Exponential 0.9
 OM 128 3.0 5.6 82.1 7.0 18 Spherical 1.9

F6
 ECa 481 0.3 4.3 14.7 2.6 43 Exponential 1.5
 Clay 108 6.7 32.9 112.0 7.0 16 Exponential 3.6
 pH 108 0.0 0.0 19.2 7.0 16 Spherical 0.2
 CEC 108 0.5 1.5 22.3 7.0 16 Spherical 1.1
 OM 108 1.5 2.5 112.0 7.0 16 Exponential 1.4
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Table 5  Multiple linear regression models for Fairways 1, 2, and 3 (F1, F2, and F3, respectively) at the Uni-
versity of Georgia golf course in Athens, GA and Fairways 4, 5, and 6 (F4, F5, and F6) the Georgia Club 
golf course in Statham, GA to predict ECa

a (mS  m−1) based on clay content (%), pH, CEC (meq 100 g−1), 
and OM (%) using the generalized least squares method

*,**,***Significant at the 0.05, 0.01, 0.001 probability level, respectively
a Abbreviations: ECa apparent electrical conductivity; CEC cation exchange capacity; OM organic matter; 
COEFF coefficient; SE standard error
b Models with Gaussian and exponential spatial correlation structures were selected according to lowest 
Akaike information criterion

University of Georgia (UGA) Georgia Club (GC)

F1 F4

Range (m) 18.99 14.42
Nugget 0.005 0.208
Model Exponential Gaussian

COEFF SE p value COEFF SE p-value
Intercept 4.270 0.467 < 0.001*** 7.075 5.698 0.218
Clay 0.003 0.007 0.684 – – –
pH – – – – 0.083 0.865 0.924
CEC – – – – – –
OM 0.011 0.024 0.655 – – –

F2 F5

Range (m) 15.68 21.71
Nugget 0.009 0.010
Model Gaussian Exponential

COEFF SE p-value COEFF SE p-value
Intercept 2.358 0.842 0.006** 5.408 0.580 < 0.001***
Clay – – – 0.003 0.009 0.760
pH 0.353 0.135 0.011* 0.036 0.069 0.601
CEC – 0.012 0.023 0.624 – – –
OM – 0.011 0.026 0.673 – – –

F3 F6

Range (m) 16.12 17.17
Nugget 0.005 0.162
Model Exponential Exponential

COEFF SE p-value COEFF SE p-value
Intercept 0.809 1.180 0.494 − 3.081 4.273 0.473
Clay 0.009 0.010 0.385 − 0.068 0.028 0.018*
pH 0.719 0.187 < 0.001*** 1.841 0.687 0.009**
CEC – – – – – –
OM 0.043 0.046 0.348 – – –
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included CEC, pH, and OM (∆AIC = − 1.8). Of these, only pH was determined to be sta-
tistically significant (p ≤ 0.05). The residual spatial autocorrelation was fitted to a Gaussian 
model with a range of 15.68 m and a nugget of 0.009. A scatter plot of the predicted versus 
measured  ECa values for F2 can be found in Fig. 3  (R2 = 0.25).

Correlation coefficients calculated for F3 revealed  ECa was weakly related to CEC 
(r = 0.21) and OM (r = 0.21) and moderately related to clay and pH (r = 0.40 and 0.36, 
respectively). In the construction of the multiple linear regression model for F3 (null model 
AIC: 24.64), CEC was excluded to leave a final model that included clay content, OM 
and pH (∆AIC = − 0.8). Similar to the model for F2, only pH was found to be significant 
(p ≤ 0.001). An exponential model with a range of 16.12 m and a nugget of 0.005 was fitted 
to the residual spatial autocorrelation. Measured versus  ECa values predicted by the model 
yielded an  R2 value of 0.28 (Fig. 3).

GC course

Exploratory analysis for F4 found a weak relationship between  ECa and pH (r = 0.33). In 
the final model predicting  ECa from pH, pH was not determined to be statistically signifi-
cant (p = 0.92). A scatter plot comparing measured versus predicted  ECa value confirmed a 
weak relationship  (R2 = 0.13).

Although both clay content and pH were found to be weakly related to  ECa on F5 
(r = 0.25 and 0.16, respectively), no strong or significant linear relationship could be estab-
lished between  ECa and soil physical and chemical properties (Table 7).

Table 6  Correlation coefficients 
between ECa

a (mS  m−1), clay 
content (%), soil pH, CEC 
(meq 100 g−1), and OM (%) for 
fairways F1, F2, and F3 at the 
University of Georgia golf course 
in Athens, GA in 2016

Significant correlations (*p < 0.05)
a Abbreviations: ECa apparent electrical conductivity; CEC cation 
exchange capacity; OM organic matter

ECa Clay pH CEC OM

F1
 ECa 1
 Clay 0.70 1
 pH 0.30 0.25 1
 CEC 0.39 0.49 0.02 1
 OM 0.47 0.46* 0.05 0.63* 1

F2
 ECa 1
 Clay 0.14 1
 pH 0.47* 0.01 1
 CEC 0.17 0.17 − 0.07 1
 OM 0.14 0.12 − 0.19 0.24* 1

F3
 ECa 1
 Clay 0.4* 1
 pH 0.36* 0.25 1
 CEC 0.21* 0.26* − 0.03 1
 OM 0.21* 0.13* − 0.13 0.54* 1
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On F6 at GC,  ECa was found to be weakly related to all four measured soil properties 
(Table 6). During the stepwise construction of the linear model to predict  ECa on F6, CEC 
and OM were excluded. Both clay content and pH were found to be significant (p = 0.018 
and 0.009, respectively); however, the relationship between measured and predicted  ECa 
values was weak  (R2 = 0.12).

The CEC-OM relationship was significantly positive on all fairways with correlation 
coefficients ranging from r = 0.24 (F2) to r = 0.63 (F1). Parameters for linear regression 
models used to predict CEC from OM are outlined in Table 7. All models were determined 
to be significant at the p < 0.001 level with the exception of F2 (p = 0.164). This was con-
sistent with correlation coefficients across fairways, since F2 was the only fairway that did 
not exhibit a strong or significant correlation between CEC and OM. Maps for CEC and 
OM from F5 are displayed in Fig. 4 to demonstrate the visible relationship between the two 
soil properties. Areas with higher CEC on the eastern section of the fairway correspond to 
areas with higher OM, and areas with lower CEC correspond to areas with lower OM on 
the western portion of the fairway (Figs. 5, 6, 7).  

Discussion

The way  ECa related to clay content, pH, CEC and OM varied across fairways. It is impor-
tant to outline the variability in these relationships, as it may inform future research deci-
sions regarding the way in which  ECa technology should be implemented in PTM.

Table 7  Correlation coefficients 
between ECa

a (mS  m−1), 
clay content (%), pH, CEC 
(meq 100 g−1), and OM (%) for 
fairways F4, F5, and F6 at the 
Georgia Club golf course in 
Statham, GA in 2016

Significant correlations (*p < 0.05)
a Abbreviations:  ECa, apparent electrical conductivity; CEC, cation 
exchange capacity; OM, organic matter

ECa Clay pH CEC OM

F4
 ECa 1
 Clay 0.04 1
 pH 0.33* 0.26* 1
 CEC − 0.12 − 0.23* 0.07 1
 OM − 0.10 − 0.48* − 0.34* 0.35* 1

F5
 ECa 1
 Clay − 0.25* 1
 pH 0.16* − 0.02 1
 CEC − 0.07 0.23 0.02 1
 OM − 0.07 0.27 − 0.31 0.57* 1

F6
 ECa 1
 Clay − 0.22* 1
 pH 0.27* 0.22 1
 CEC 0.10 0.03 0.25* 1
 OM 0.11 − 0.25 − 0.20 0.44* 1
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The positive  ECa-clay content relationships observed on the UGA course are similar 
to those observed in previous studies (Pedrera-Parrilla et al. 2016b; Stadler et al. 2015). 
However, even in previous studies, these relationships were not always consistent across 
locations within the same study (Stadler et al. 2015). In contrast to UGA, relationships 
between  ECa and clay content at GC were generally weak and negative. These findings 
indicate that  ECa collected with a Veris device may not be appropriate for predicting 
spatial structure of clay content at the GC location. The lack of relationship may be 
attributed to lower mean clay content. Mean clay content at UGA was greater than at 
GC (15 and 9%, respectively). Previous research with Veris devices reported poor cor-
relation with coarser textured soils compared to non-invasive EMI devices (Corwin and 

Fig. 3  Scatterplots for measured versus predicted apparent electrical conductivity  (ECa) for Fairways 1–6 
(F1–F6, respectively) using linear models generated in Table 7
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Fig. 4  Kriged maps of apparent electrical conductivity  (ECa) and clay content for Fairway 3 (F3) at the 
University of Georgia golf course in Athens, GA in 2016 (equal interval legend classifications)

Fig. 5  Kriged maps of apparent electrical conductivity  (ECa) and soil pH for Fairway 2 (F2) at the Univer-
sity of Georgia golf course in Athens, GA in 2016 (equal interval legend classifications)
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Lesch 2003, 2005b). Weak or inconsistent relationships between clay content and other 
soil properties including pH, CEC and OM (Table  6) further supports the hypothesis 
that clay content is not a dominant property influencing soil physical and chemical pro-
cesses for the GC location.

Relationships between  ECa and soil pH were more consistent across locations. 
Though the strength of the relationship varied, positive correlations were observed 
across all fairways, and pH was included in the predictive models for five out of the six 
fairways included in this study (Table 7). Minimal research has explored the relation-
ship between  ECa and soil pH. Gholizadeh et al. (2011) observed a significant positive 
 ECa-soil pH correlation (r = 0.35) with shallow  ECa data collected using a Veris device 

Fig. 6  Kriged maps of apparent electrical conductivity  (ECa) and organic matter (OM) for Fairway 1 (F1) at 
University of Georgia golf course in Statham, GA in 2016 (equal interval legend classifications)
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in Malaysian paddy fields with a similar mean pH (5.3). Soil pH influences a number 
of soil processes and properties that are important for turfgrass management including 
CEC, soil microbial transformations, lime requirements and nutrient availability (Car-
row et al. 2001). The ability to predict spatial structure and identify spatial trends in soil 
pH may improve precision turf management practices, particularly for applications of 
soil amendments such as lime.

The absence of discernible trends across fairways indicates that Veris collected  ECa data 
is not a strong predictor for CEC at either GC or UGA. Although  ECa has been correlated 
to CEC in previous studies (McBride et al. 1990; Triantafilis et al. 2002), these relation-
ships were attributed to greater variability in soil mineralogy and salinity. Additionally, 
researchers predominantly used EMI devices, which are non-invasive and less affected by 
soil moisture and coarse textures (Corwin and Lesch 2003). It is possible that  ECa-CEC 

Fig. 7  Kriged maps of cation exchange capacity (CEC) and organic matter (OM) for Fairway 5 (F5) at 
Georgia Club golf course in Statham, GA in 2016 (equal interval legend classification)
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correlations could be strengthened with the use of an alternative device, particularly on 
golf course fairways with lower clay content. Conversely, the continuous surface layer of 
vegetation characteristic of turfgrass systems may mask soil properties surveyed with an 
EMI device when compared with other cropping systems (Serrano et al. 2014). Alterna-
tive methods for determining CEC may also change  ECa-CEC correlations. Mehlich III 
and similar extraction methods may overestimate CEC by dissolving precipitate materials 
in the soil when compared with methods that use different exchange solutions (Dohrmann 
and Kaufhold 2009). Traditionally, this is not an issue for southeastern soils since they are 
not calcareous; however, recent lime applications could impact CEC values.

The only fairway that exhibited a significant relationship between  ECa and OM was F3 
at UGA (r = 0.21). Visual comparison of maps (not shown) confirmed a weak relation-
ship. Based on these visual comparisons and a weak correlation value, OM does not appear 
to be the dominant factor affecting  ECa values for this fairway. Though not significant, 
F1 had a moderately positive  ECa-OM correlation (r = 0.47). Visual comparison of spatial 
maps (Fig. 3) confirms a moderately positive relationship between these two parameters. 
All remaining fairways (F2, F4, F5 and F6) showed no significant  ECa-OM relationship, 
and no discernible trends could be established either within or across golf courses. The 
 ECa-OM relationship varied significantly across previous research (Gholizadeh et al. 2011; 
Jaynes 1996; Moral et al. 2010). Soil apparent electrical conductivity has been positively 
correlated to organic carbon in Malaysian paddy fields (Gholizadeh et al. 2011), but exhib-
ited no correlation to OM in Spanish rapeseed fields (Moral et al. 2010).

The relationship between CEC and OM has not been extensively explored in turfgrass 
systems. Previous researchers have indicated that the role of OM may be unique in tur-
fgrass due to the layered nature of the soil profile, indicative of a continuous perennial 
surface (Krum et  al. 2011). Organic matter influence on root zone CEC may be greater 
for turfgrass than other cropping systems, because the OM layer is more pronounced and 
not subjected to cultivation practices that create a more homogeneous soil profile. This is 
important for nutrient management, since OM content may provide a more definitive indi-
cation of nutrient availability in the root zone than soil texture. However, it does not appear 
that  ECa data collected from a Veris device provides an accurate representation of CEC or 
OM spatial variability on golf course fairways.

Surface topography can influence the spatial variability of  ECa (Corwin and Lesch 
2005b; Fritz et al. 1999). Maps for F1 revealed strong visual trends between soil physical 
and chemical properties. Interestingly, despite visual evidence of soil spatial relationships 
between properties, correlation coefficients between  ECa and other soil properties (clay 
content, pH, CEC, and OM) were not significant (Table 5). Topographical data were not 
collected, but F1 generally slopes upward from west to east (toward the putting green). For 
all soil properties, greater values are concentrated on the western section of the fairway, 
while lower values are concentrated on the eastern portion. This may be an indication of 
soil moisture and clay colloid accumulation as a function of topographical changes, since 
smaller particles (clay and OM) are more likely to run off following rainfall and irrigation 
events (Corwin and Lesch 2005b). Topography has also been found to impact soil aggre-
gation, soil organic carbon and total nitrogen in some systems (Ayoubi et al. 2012). The 
UGA course is much older than GC, and may be more influenced by topographical changes 
as a consequence of age. Additional research exploring the role of topography could be 
important to understand the spatial variability of soil properties, particularly on golf course 
fairways that were designed with significant changes in elevation. The resulting accumula-
tion at the base of this fairway could lead to an increase in clay content and OM, as well as 
CEC, pH and  ECa since these properties are positively correlated with one another.



Precision Agriculture 

1 3

Soil moisture may impact results, because measurements of ER require close contact 
between the soil and device electrodes (Corwin and Lesch 2005b). Several studies have 
suggested mapping at field capacity to establish stronger correlations between  ECa and soil 
physical properties such as clay content (Brevik et  al. 2006; Islam et  al. 2012; Pedrera-
Parrilla et al. 2016b). In one study, Pedrera-Parrilla et al. (2016b) established stronger cor-
relations when  ECa measurements were collected under wet soil conditions, but they did 
suggest that dry soil does not inhibit the efficacy of  ECa surveys to predict soil texture.

Soil depth may also play a role in  ECa applications for turfgrass systems. Although spa-
tial structure remains intact, previous research in other cropping systems observed shifts in 
correlations between  ECa and other soil properties (including clay content) with increasing 
depth. Cho et al. (2016) noted a decline in fit between  ECa and clay content with increasing 
depth, while Stadler et  al. (2015) observed an improvement in fit with increasing depth. 
Mapping soil properties of the uppermost soil profile is most relevant for fertility manage-
ment in turfgrass systems, because most rooting occurs there. Current devices may collect 
data at depths that exceed this region and therefore do not provide the best representation 
of relevant soil spatial variability.

Future research should explore the  ECa-pH relationship at locations representing a 
broader range of soil acidity and alkalinity, and should evaluate ways to strengthen or better 
define this relationship. Soil moisture may significantly influence  ECa, particularly in turf-
grass systems with coarser textured soils and minimal OM. Future research should explore 
not only the relationship between  ECa and soil moisture in turfgrass systems, but the role 
soil moisture may play in strengthening relationships between  ECa and soil physical and 
chemical properties. Temporal variability may also have an effect on  ECa-soil relation-
ships. Longitudinal data collected at different time points could provide greater insight into 
the way these relationships shift over time. Finally, research exploring the role of topogra-
phy could be important to understand the spatial variability of soil properties, particularly 
on golf course fairways that were designed with significant changes in elevation. Future 
research should collect high-resolution topographic data to generate 3-dimensional maps 
that may better articulate these relationships.

Conclusion

A modified Veris device was utilized to collect  ECa data across six fairways at two golf 
courses in North Georgia (UGA and GC) to determine whether  ECa could be used to predict 
the spatial variability of soil physical and chemical properties that are difficult to measure. 
Golf course fairways exhibited spatial variability of clay content, soil pH, CEC and OM, all 
of which have an impact on fertility management in turfgrass. Relationships between  ECa 
and soil properties were determined through a combination of traditional statistical meth-
ods and visual comparison of spatial maps. In general, the relationships between measured 
parameters varied significantly both across and within locations. Although there was evi-
dence of a predictive relationship between  ECa and soil properties (primarily clay content, 
pH and OM) on some fairways, the parameters measured were insufficient to explain the 
majority of variability in  ECa. Consequently, more research must be conducted before  ECa 
data can be used as a tool for mapping soil properties in turfgrass systems.

The Veris device was not determined to have any notable relationship with CEC in this 
study. Moderate to strong positive relationships were observed between CEC and OM for 
five out of six fairways. Therefore, CEC in turfgrass root zones may be strongly influenced 
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by OM, which could be important to turfgrass managers when delineating zones for site-
specific management. Consistent positive correlations between  ECa and soil pH observed 
for all fairways indicates that the Veris device is effective at predicting pH trends on golf 
course fairways at these locations. Accuracy of Veris collected  ECa data in predicting spa-
tial structure of soil physical and chemical properties is location-specific.

Positive relationships between  ECa and pH were observed across all fairways in this 
study. It is unclear whether the relationship between  ECa and pH would extend to other pH 
ranges, since existing research has only evaluated acidic soils in the 5.5–6.5 range.
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